

Geoffrey Field Junior School Progression in Calculation Policy - Overview

Addition, Subtraction, Multiplication and Division

Date: May 2023

1) Progression for addition Years 1 to 6
2) Progression for subtraction Years 1 to 6
3) Progression for multiplication Years 1 to 6
4) Progression for division Years 1 to 6
5) National Curriculum Objectives Addition and Subtraction calculations
6) National Curriculum Objectives Addition and Subtraction calculations

Progression for Addition Year 1 to 6

- PLEASE NOTE THIS PROGRESSION DOCUMENT SHOWS THE END POINT FOR EACH YEAR GROUP ONLY. The smaller steps, prior to this end point, must be taught and are found in the detailed progression document behind with CPA progressions for each step.

Year 1 end point	Year 2 end point	Year 3 end point
Add numbers by counting on (including crossing 10) using a number line or number tracks to support $5+3=8$	Add on from a 2-digit number by adding 10s then 1 s (counting on). $23+12=23+10+2$ Add two 2 digit numbers by adding the 10s and 1s separately (partitioning). $\begin{aligned} & 32+11 \\ & 30+10=40 \\ & 2+1=3 \\ & 40+3=43 \end{aligned}$	Use column addition with exchange for two 3 digit numbers, ensuring understanding of place value at every stage of the calculation. $126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?

Year 4 end point				
Use a column m numbers, includ				
	Th	H	T	0
	1	5	5	4
$+$	4	2	3	7
				1
			1	
	Th	H	T	0
	1	5	5	4
$+$	4	2	3	7
			9	1
			1	
	Th	H	T	0
	1	5	5	4
$+$	4	2	3	7
		7	q	1
			1	
Th H T O				
	1	5	5	4
$+$	4	2	3	7
	5	7	q	1
			'	

Note: children should be able to calculate sums where there is exchange in more than one column. They should also be able to add 4 digit and 3 or 2 digits ensuring calculations are lined up correctly.

Year 6 end point
Use column addition where mental methods are not efficient for increasingly larger numbers. Recognise common errors with column addition.
$32,145+4,302=?$

Column methods are also used for decimal additions where mental methods are not efficient.

$$
\begin{array}{rrrrr}
\mathrm{H} & \mathrm{~T} & \mathrm{O} \cdot \text { Tth Hth } \\
\hline \mathrm{I} & 4 & 0 & \cdot & 0 \\
+ & 4 & \mathrm{q} \cdot & 8 & \mathrm{q} \\
\hline & 8 & \mathrm{q} \cdot & \mathrm{q} & 8 \\
\hline
\end{array}
$$ understanding of place value.

$\mathrm{O} \cdot$ Tth Hth
$0 \cdot q \quad 2$

$+\begin{array}{r}0 \cdot 3 \\ \hline 1 \cdot 25 \\ \hline\end{array}$
Include additions where the numbers of decimal places are different

$$
\begin{gathered}
3.4+0.65=? \\
\frac{0 \cdot \text { Tth Hth }}{3 \cdot 4}
\end{gathered}
$$

$$
\begin{array}{r}
0.65 \\
\hline
\end{array}
$$

Progression for Subtraction Year 1 to 6

- PLEASE NOTE THIS PROGRESSION DOCUMENT SHOWS THE END POINT FOR EACH YEAR GROUP ONLY. The smaller steps, prior to this end point, must be taught and are found in the detailed progression document behind with CPA progressions for each step.

Year 1 end point	Year 2 end point	Year 3 end point
Counting Back Children count back to take away and use a number line or number track to support the method. Part Whole Model Children use a part-whole model to support the subtraction to find a missing part. $8-5=?$ Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model.	Counting Back Subtract 10 s then 1 s with a number line for visual support. $\begin{aligned} & 25-10-2=13 \\ & 25-12=13 \end{aligned}$ Bridging Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$	Use column subtraction with exchange for three digit numbers, ensuring understanding of place value at every stage of the calculation. If the subtraction is a 3-digit number subtract a 2-digit number, children should understand how the recording relates to the place value, and so how to line up the digits correctly. Children should also understand how to exchange in calculations where there is a zero in the 10 s column.

Year 4 end point
Use a column method to subtract two 4 digit numbers, including exchanges. 3 4357 -2735 1622

Make exchanges across more than one column where there is a zero as a place holder.

$$
2,502-243=?
$$

Year 5 end point
Use column subtraction for larger numbers, including exchanges and including sums where numbers need to be lined up accurately e.g. 5 digit -3 digit.

$62,597-18,034=44,563$
Use column subtraction, with an understanding of place value, including subtracting numbers with up to 3 decimal places.
$3.921-3.75=$?

$\mathrm{O} \cdot$ Tth
$3 \cdot$

$-3 \cdot 7 \quad 5 \quad 0$

Year 6 end point
Compare and select methods.
Use column subtraction when mental methods are not efficient.
Use two different methods for one calculation as a checking strategy.

Use column subtraction for decimal problems, which needs an understanding of place value to align the columns correctly.
309.6-206.40

| H | T | O \cdot Tth | Hth |
| ---: | ---: | ---: | ---: | ---: |
| 3 | 0 | $9 \cdot$ | 0 |
| -2 | 0 | $6 \cdot 4$ | 0 |
| 1 | 0 | $3 \cdot 2$ | 0 |

Progression for multiplication Year 1 to 6

- PLEASE NOTE THIS PROGRESSION DOCUMENT SHOWS THE END POINT FOR EACH YEAR GROUP ONLY. The smaller steps, prior to this end point, must be taught and are found in the detailed progression document behind with CPA progressions for each step.

\begin{tabular}{|c|c|c|}
\hline Year 1 end point \& Year 2 end point \& Year 3 end point \\
\hline \begin{tabular}{l}
Recognising and making equal groups Children draw and represent equal and unequal groups. \\
Describe equal groups using words \\
Three equal groups of 4 . \\
Four equal groups of 3 . \\
Finding the total of equal groups by counting in 2s, 5s and 10s
\end{tabular} \& \begin{tabular}{l}
Learning \(\times 2, \times 5\) and \(\times 10\) table facts \\
Equal groups and repeated addition \\
\(\bigcirc\) \\
\(\square\)

$$
\begin{aligned}
& 5+5+5=15 \\
& 3 \times 5=15
\end{aligned}
$$

Using arrays to represent multiplication and support understanding

4 groups of 5 ... 5 groups of 5

Understanding commutativity

$$
\begin{aligned}
& 4+4+4+4+4=20 \\
& 5+5+5+5=20
\end{aligned}
$$

$4 \times 5=20$ and $5 \times 4=20$

 \&

Multiplying a 2-digit number by a 1-digit number, expanded column method Children may write calculations in expanded column form, but must understand the link with place value and exchange.

Children are encouraged to write the expanded parts of the calculation separately.

$$
\begin{array}{ll}
5 \times 28=? \\
& \\
\hline \begin{array}{rl}
28 & 0 \\
\times \quad 5 & \\
\hline 40 & 5 \times 8 \\
100 & 5 \times 20 \\
\hline 140 &
\end{array}
\end{array}
$$

\end{tabular}

\hline
\end{tabular}

Progression for Division Year 1 to 6

- PLEASE NOTE THIS PROGRESSION DOCUMENT SHOWS THE END POINT FOR EACH YEAR GROUP ONLY. The smaller steps, prior to this end point, must be taught and are found in the detailed progression document behind with CPA progressions for each step.

Year 1 end point	Year 2 end point	Year 3 end point
Children solve problems by sharing amounts into equal groups (sharing). NB. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record division formally.	Calculate divisions within the multiplication tables and write them using the division (\div) and equals (=) signs (sharing and grouping) $20 \div 5=4$	Calculate divisions within the multiplication tables and write them using the division (\div) and equals (=) signs (sharing and grouping) $24 \div 4=6$ 2-digit number divided by 1-digit number, no remainders (using times tables they know) (sharing) Children partition a number into 10s and 1s to divide (sharing no exchange) $\begin{aligned} & 40 \div 2=20 \\ & 8 \div 2=4 \\ & 68 \div 2=24 \end{aligned}$ Children partition a number into 10 s and 1 s to divide (sharing with exchange)

Year 4 end point
Dividing 2-digit and 3-digit numbers by a single

Understand that different partitions can be used to complete the same division (grouping to support division)
a) Grouping - partitioning using 10 lots of the divisor

b) Grouping - partitioning using larger multiples of 10 of the divisor

$$
132 \div 3=44
$$

c) Grouping - partitioning using the highest possible multiple of 10 of the divisor

Year 5 end point
Use short division for up to 4-digit numbers divided by a single digit (grouping).

Year 6 end point
Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context

Using factors
$2,100 \div 12=$?
$2.100 \rightarrow \square \rightarrow+$
$2.100 \rightarrow+6 \rightarrow 2 \rightarrow$
$2.100 \rightarrow \rightarrow 3 \rightarrow 4 \rightarrow$
$2,100 \rightarrow 4 \rightarrow+3$

Smaller 2 digit numbers

Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division

Use short division to divide decimals with up to 2 decimal places.
$0 \cdot 5 \quad 3$
$8 \longdiv { 4 \cdot { } ^ { 4 } 2 { } ^ { 2 } 4 }$

Addition \& subtraction: Calculations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- add and subtract one-digit and twodigit numbers to 20 , including zero	- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three onedigit numbers	- add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers	- perform mental calculations, including with mixed operations and large numbers - use their knowledge of the order of operations to carry out calculations involving the four operations

Multiplication \& division: Calculations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs	- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods	- multiply two-digit and three-digit numbers by a onedigit number using formal written layout	- multiply numbers up to 4 digits by a one- or twodigit number using a including long multiplication for two-digit numbers multiply and divide numbers mentally drawing upon known facts divide numbers up to 4 digits by a one-digit number using the formal written method of short remainders appropriately for the context - multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000	- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication - divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal division method of short appropriate, interpreting remainders according to the context - perform mental calculations, including with mixed operations and large numbers large numbers

